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Abstract

Cofactor pair systems generalize the separable potential Hamiltonian systems. They admit n quadratic integrals of motion, they
have a bi-Hamilton formulation, they are completely integrable and they are equivalent to separable Lagrangian systems. Cofactor
pair systems can be constructed through a peculiar multiplicative structure of the so-called quasi-Cauchy–Riemann equations
(cof J )−1

∇V = (cof J̃ )−1
∇ Ṽ , where J and J̃ are special conformal Killing tensors.

In this work we have isolated the properties that are responsible for the multiplication, allowing us to give an elegant
characterization of systems that admit multiplication. In this characterization the equation X∇ det X = det X∇tr X plays a central
role.

We describe how multiplication of quasi-Cauchy–Riemann equations can be considered as a special case of a more general
kind of multiplication, defined on the solution space of certain systems of partial differential equations. We investigate algebraic
properties of this multiplication and provide several methods for constructing new systems with multiplicative structure. We also
discuss the role of the multiplication in the theory of equivalent dynamical systems on Riemannian manifolds, developed by Levi-
Civita.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Throughout this paper, we will assume that we are on a n-dimensional Riemannian manifold Q with a metric (gi j )

and local coordinates (q i ). We study equations of the form

A−1
∇V = Ã−1

∇ Ṽ , (1)

where A and Ã are non-singular tensors of rank two and ∇ is the gradient operator defined by (∇V )i = gi j∂ j V
(∂ j := ∂/∂q j ). This is a system of n first-order linear partial differential equations in two dependent variables V ,
Ṽ and n independent variables q i . Whenever n > 2, the number of unknown functions is less than the number of
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equations and the system (1) is overdetermined. Thus, we cannot expect that non-trivial (non-constant) solutions exist
without some restrictions on A and Ã.

Our main reason for studying systems of this kind is their connection to the so-called cofactor pair systems, which
are certain kinds of dynamical systems on Riemannian manifolds.

By a dynamical system we mean a system of first-order equations equivalent to a Newton equation q̈h
+Γ h

i j q̇
i q̇ j

=

Fh with an external force F = (Fh) that has no explicit dependence on time or velocity, and Γ h
i j is the Christoffel

symbol. Such a system is characterized by the triple (Q, g, F). A cofactor pair system is a dynamical system where
the force F has two essentially different cofactor formulations, i.e., F = −(cof J )−1

∇V = −(cof J̃ )−1
∇ Ṽ , where

J and J̃ are two linearly independent non-singular special conformal Killing (SCK) tensors.
The theory of cofactor pair systems was developed in Linköping by Rauch-Wojciechowski, Marciniak, Lundmark,

and Waksjö in [10,8,9,11]. In these papers, which deal with the Euclidean case, it has been proven that a cofactor pair
system admits n quadratic integrals of motion, it has a bi-Hamiltonian formulation and it is completely integrable.
These results were later generalized to a general Riemannian manifold in [3]. In [1] Benenti shows that cofactor pair
systems are equivalent to separable Lagrangian systems in the sense of Levi-Civita. All these properties make cofactor
pair systems a very interesting class of dynamical systems. For fixed SCK tensors J and J̃ , a cofactor pair system is
characterized by solutions of Eq. (1) with A = cof J and Ã = cof J̃ . When A and Ã are the cofactors of SCK tensors,
we call the corresponding equation

(cofJ )−1
∇V = (cof J̃ )−1

∇ Ṽ (2)

a quasi-Cauchy–Riemann (QCR) equation.
The QCR equation may have constant or q dependent tensors A and Ã. In the case when A and Ã are constant, on

performing a suitable linear transformation q → Bq , Eq. (1) takes the form ∇V = M∇ Ṽ , where M is in real Jordan
form. An explicit formula for the general solution of the system ∇V = M∇ Ṽ is presented by Jodeit and Olver in [5].
When n = 2 and

A =

[
1 0
0 −1

]
, Ã =

[
0 1
1 0

]
, (3)

the system (1) becomes the well known Cauchy–Riemann (CR) equations. For the CR equations, the ordinary
multiplication of analytic functions can be interpreted as a bi-linear operation on the linear space of solutions. If
f = V + iṼ and g = W + iW̃ are two analytic functions, then the product f g = (V W − Ṽ W̃ ) + i(V W̃ + Ṽ W )

is also analytic. So for solutions of the CR equations, we can introduce a multiplication operation ∗ in the following
way:

(V, Ṽ ) ∗ (W, W̃ ) =

(
V W − Ṽ W̃ , V W̃ + Ṽ W

)
. (4)

In other words, given two solutions (V, Ṽ ) and (W, W̃ ) of the Cauchy–Riemann equations, the operation ∗, defined
by (4), prescribes a new solution in a bi-linear way.

Lundmark discovered a very remarkable multiplicative structure on the class of cofactor pair systems [7]. Expressed
as an operation ∗ on the solution space of Eq. (2) (in the case n = 2) this multiplication takes the form

(V, Ṽ ) ∗ (W, W̃ ) =

(
V W − (det X)Ṽ W̃ , V W̃ + Ṽ W − (tr X)Ṽ W̃

)
,

where X = J̃−1 J . In the Euclidean case, when we choose J = A and J̃ = Ã in (3), Eq. (2) reduces to the ordinary
Cauchy–Riemann equations and det X = 1, tr X = 0. Thus, multiplication of analytic functions is reconstructed by
this more general multiplication, which is well defined for cofactor pair systems. This is why we call the equation
(cof J )−1

∇V = (cof J̃ )−1
∇ Ṽ a quasi-Cauchy–Riemann equation. A similar but more complicated multiplication

formula exists for n > 2.
The existence of a multiplication is a very unusual and strong property of the QCR equation. Given a pair of

solutions (V, Ṽ ) and (W, W̃ ), the product (V, Ṽ ) ∗ (W, W̃ ) defines a new solution in a purely algebraic way. Hence,
by forming polynomials and even convergent power series

∑
k(V, Ṽ )k with respect to ∗, it is possible to generate

large families of solutions (and thereby large families of cofactor pair systems) from one known solution (V, Ṽ ).
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Our aim is to investigate the multiplication ∗ in order to gain better understanding of its properties and of which
systems allow this kind of multiplication. It turns out that the equation X∇ det X = det X∇tr X , appearing in the
title of this work, plays an important role in characterizing systems of first-order PDE’s that allow multiplication.
Therefore, a significant part of this paper will be devoted to the study of this equation.

Remark 1. We adopt the usual convention for raising and lowering indices with the metric, e.g., Ai j
= Ai

k gk j

(summation over repeated indices is understood as usual and [gi j
] = [gi j ]

−1), and consider Ai j , Ai j and A j
i as

different versions of the same rank two tensor A. A rank two tensor A acts on a vector X = (X i ) and on a 1-form
α = (αi ) as linear operators according to

(AX)i = Ai
j X j and (Aα)i = A j

i α j ,

respectively. If A and B are tensors of rank two, we let AB denote the product of A and B when considered as linear
operators acting on vectors, i.e.,

(AB)ij = Ai
k Bk

j .

2. Quasi-Cauchy–Riemann equations

A primary model for equations with multiplication is the Quasi-Cauchy–Riemann (QCR) equation

(cofJ )−1
∇V = (cof J̃ )−1

∇ Ṽ , (5)

where J and J̃ are special conformal Killing tensors and cofJ := (det J )J−1.

2.1. Special conformal Killing tensors

We recall that a symmetric rank two tensor J is a Killing tensor if ∇(h Ji j) = 0, a conformal Killing tensor if
∇(h Ji j) = α(h gi j) and a special conformal Killing (SCK) tensor if ∇h Ji j =

1
2 (αi g jh + α j gih) for a 1-form α (∇h

denotes the covariant derivative with respect to the Levi-Civita connection). If we contract the indices i and j , we see
that the only possible choice for the 1-form is α = d(tr J ) for a SCK tensor. It follows immediately that every SCK
tensor is a conformal Killing tensor of trace type. Moreover, cofJ is a Killing tensor whenever J is a SCK tensor. The
metric g is always a SCK tensor, thus, every Riemannian manifold admits at least a one-dimensional space of SCK
tensors. Depending on the metric g, additional SCK tensors may or may not exist. In the Euclidean space, there exist
many SCK tensors, since J is a SCK tensor if and only if it has the form

J i j
= aq i q j

+ bi q j
+ b j q i

+ ci j ,

where a, bi , ci j
= c j i are arbitrary constants and q are Cartesian coordinates. Thus, the space of SCK tensors has

the dimension (n + 1)(n + 2)/2. On the other hand, if a Riemannian manifold admits two independent SCK tensors
and at least one of them has functionally independent eigenfunctions, then the manifold must be of constant curvature
(see [2]). Hence, in a manifold with non-constant curvature, SCK tensors are rare.

2.2. The QCR equation

A Newton equation q̈h
+Γ h

i j q̇
i q̇ j

= Fh admits an integral of motion E =
1
2 Ai j q̇ i q̇ j

+V (q) (quadratic in velocity),

where the tensor A is non-singular, if and only if F = −A−1
∇V and A is a Killing tensor. Thus, since cofJ is a Killing

tensor if J is a SCK tensor, the QCR equation (5) is a condition for the Lagrange equation to admit two integrals of
motion E =

1
2 (cofJ )i j q̇ i q̇ j

+ V (q) and Ẽ =
1
2 (cof J̃ )i j q̇ i q̇ j

+ Ṽ (q), that are quadratic in velocity. However, we will
forget about the connection to dynamical systems and study the QCR equation (5) for itself.

The QCR equation can also be written as

X∇V = det X∇ Ṽ ,

where X = J̃−1 J .
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2.3. The fundamental equation

Solutions of QCR equations can be characterized by solutions of a related system of linear second-order PDE’s
in one dependent variable, known as the fundamental equation. The fundamental equation can be expressed in a
convenient way, using a differential operator DJ , associated with a SCK tensor J . This operator was introduced by
Crampin and Sarlet in [3], and is defined as

DJ θ =
dJ ((det J )θ)

det J
,

where dJ is another differential operator defined by the following properties:

(1) It acts on functions according to dJ f = Jd f .
(2) dJ (α ∧ β) = (dJα) ∧ β + (−1)kα ∧ (dJβ), when α is a k-form.
(3) dJ anti-commutes with the exterior derivative d, i.e., dJ d + ddJ = 0.

dJ is a derivation of degree 1 of type d∗, in the sense of Frölicher–Nijenhuis theory, see [4]. DJ is not a derivation but
it has the following properties:

Proposition 2. (1) D2
J = 0.

(2) Let θ be a k-form. Then DJ θ = 0 if and only if there exists (locally) a (k − 1)-form φ such that θ = DJφ.
(3) If J̃ is another SCK tensor (of the same metric g) and µ is a real number, then

DJ+µ J̃ = DJ + µD J̃ and DJ D J̃ + D J̃ DJ = 0.

The proof follows from corresponding properties of the operator dJ , that can be found in [13].

Theorem 3 (Fundamental Equation). If (V, Ṽ ) satisfies the QCR equation (5), then both functions V/ det J and
Ṽ / det J̃ satisfy the same equation

DJ D J̃φ = 0. (6)

Conversely, each solution φ of Eq. (6) generates two solutions (V, Ṽ ) of the QCR system, one with V = (det J )φ and
one with Ṽ = (det J̃ )φ.

Theorem 3 gives a 1–1 correspondence between solutions of the QCR equation and of the related fundamental
equation. For each solution φ of the fundamental equation, there exists a unique (up to an irrelevant additive constant)
solution (V, Ṽ ), with V = (det J )φ.

2.4. The µ dependent QCR equation

In this study it turns out that it is more natural to consider the parameter dependent system

(cof(J + µ J̃ ))−1
∇Vµ = (cof J̃ )−1

∇ Ṽ , (7)

where µ is a real parameter. The system (7) is obtained by replacing J with J + µ J̃ in the QCR equation. Due to the
linear structure of SCK tensors, J +µ J̃ is also a SCK tensor, thus (7) is in fact a parameter dependent QCR equation.
Eq. (7) can be written as

Xµ∇Vµ = det Xµ∇ Ṽ , (8)

where Xµ = X + µI and X = J̃−1 J . The parameter dependent system (7) has DJ+µ J̃ D J̃φ = 0 as the related
fundamental equation. Hence, according to Proposition 2, the fundamental equation is in fact the same as for the
ordinary QCR equation (cof J )−1

∇V = (cof J̃ )−1
∇ Ṽ . Thus, there is also a 1–1 correspondence between the

solutions of a QCR equation and the solutions of the related parameter dependent QCR equation. Explicitly, for each
solution (V, Ṽ ) of the QCR equation (5), there exists a unique (up to constants) solution Vµ of the µ dependent
QCR equation (7) such that V (0)

= V and V (n−1)
= Ṽ . Passing to the equivalent parameter dependent QCR

system is a key ingredient in the proof of the multiplication theorem for cofactor pair systems, presented in [7].
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The fact that Eqs. (5) and (7) share the same fundamental equation is closely connected to the “2 implies n” theorem,
which states that a dynamical system that allows two quadratic (in velocity) integrals E = (cofJ )i j q̇ i q̇ j

+ V (q) and
Ẽ = (cof J̃ )i j q̇ i q̇ j

+ Ṽ (q) of motion of cofactor type must in fact have n quadratic integrals of motion, see [8].

Remark 4. A special case of multiplication for QCR equations, expressed as a recursion formula, was discovered
before the general multiplication was found. The recursion formula was first discovered in the Euclidean case for
n = 2 in [10]. Later it was generalized to the general Euclidean case in [8] and thereafter to a general Riemannian
manifold in [7].

In this paper, we will take this multiplication to its natural environment: the solution space of certain systems of
partial differential equations. By doing this, we have been able to characterize systems that allow a more general
multiplication, which includes the multiplication of cofactor pair systems as a special case.

3. Multiplication

Let X be a non-singular rank two tensor and let Xµ = X + µI , where µ is a real parameter. Inspired by
multiplication of cofactor pair systems, we consider more general systems Xµ∇Vµ = det Xµ∇ Ṽ . In this section
we intend to investigate under which restrictions this equation admits a multiplication on its space of solutions, that is
similar to the one present for cofactor pair systems. The components in this vector equation are polynomials in µ and
by analyzing the degrees, we realize that the dependent variable Vµ is a polynomial of degree n−1. We let V (i) denote
the coefficient in Vµ at degree i , i.e., Vµ = V (0)

+ V (1)µ + · · · + V (n−1)µn−1. By studying the highest order terms
in the equation, we find that Ṽ and V (n−1) must be the same up to an inessential constant term. Thus, we consider
equations of the form

Xµ∇Vµ = det Xµ∇V (n−1), (9)

or the equivalent form XµdVµ = det XµdV (n−1). Let Z (i) be defined as det Xµ = Z (0) + Z (1)µ+ · · · + Z (n)µn , i.e.,
Z (i) is the elementary symmetric polynomial of degree n − i in the eigenvalues of X . We note that Z (0) = det X ,
Z (n−1)

= tr X , Z (n) = 1. By identifying coefficients of different powers of µ in (9), we obtain the equations

X∇V (i)
+ ∇V (i−1)

= Z (i)∇V (n−1), i = 0, . . . , n − 1, (10)

where V (−1)
:= 0. We observe that this is a system of n2 first-order linear PDE’s for n dependent variables V (i). Since

X is non-singular, it is possible to remove one of the vector equations in (10) by using the Cayley–Hamilton theorem,
leaving us with a system of n(n − 1) PDE’s. Since the elements of Xµ∇Vµ are polynomials in µ, which are of degree
at most the degree of det Xµ, we see that Eq. (9) is also equivalent to

Xµ∇Vµ ≡ 0 (mod det Xµ), (11)

meaning that each component in the vector Xµ∇Vµ, when considered as a polynomial in µ, is divisible by the
polynomial det Xµ. Each of the three different ways, (9)–(11), of writing the same system of PDE’s has its own
advantages. The form (11) is most suitable for discussing the forthcoming multiplication. In the following, whenever
the equivalence symbol ≡ is used, it should be understood as equivalence modulo the polynomial det Xµ.

3.1. The ∗-operator

We introduce a multiplication ∗ on the space of solutions of (11), by defining the product Vµ ∗Wµ, of two solutions
Vµ,Wµ, as the residue of the polynomial VµWµ after division by det Xµ. Given two solutions Vµ and Wµ, there exist
unique polynomials Qµ and Rµ = Vµ ∗ Wµ such that

VµWµ = Qµ det Xµ + Rµ,

where the degree of Rµ is less than n.
The function Vµ ∗ Wµ is not in general a solution of the system (11). We have to consider a special kind of

system of the form (11), where we put some restrictions on the tensor X . We will now investigate which restrictions
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are necessary and sufficient in order for Vµ ∗ Wµ to be a solution. For solutions Vµ,Wµ of Eq. (11), there exists a
polynomial Qµ such that Vµ ∗ Wµ = VµWµ − Qµ det Xµ. Thus, we have that

Xµ∇(Vµ ∗ Wµ) = WµXµ∇Vµ + VµXµ∇Wµ − (det Xµ)Xµ∇Qµ − QµXµ∇ det Xµ
≡ 0 + 0 − 0 − QµXµ∇ det Xµ
= −QµXµ∇ det Xµ. (12)

If we require that Vµ∗Wµ should be a solution whenever Vµ and Wµ are solutions, a necessary and sufficient condition
is that Xµ∇ det Xµ ≡ 0. The sufficiency is obvious. To see the necessity, we choose Vµ and Wµ as the trivial solutions
µ and µn−1 respectively. Then

VµWµ = µµn−1

= µn

≡ det Xµ − (Z (0) + Z (1)µ+ · · · + Z (n−1)µn−1).

Thus, Vµ ∗ Wµ = −(Z (0)+ Z (1)µ+· · ·+ Z (n−1)µn−1) and, more important, Qµ = −1. The calculation (12) then
implies that Vµ ∗ Wµ is a solution if and only if Xµ∇ det Xµ ≡ 0. Thereby, we have proven that systems of the form
(11) that allow the ∗-multiplication are characterized solely by solutions of the equation Xµ∇ det Xµ ≡ 0, which will
be investigated in the next section. We can formulate this result as

Theorem 5 (Multiplication). Assume that the tensor X satisfies the equation Xµ∇ det Xµ ≡ 0 and that Vµ,Wµ are
two solutions of the equation Xµ∇Vµ ≡ 0. Then Vµ ∗ Wµ is also a solution of Xµ∇Vµ ≡ 0.

In order to clarify how this multiplication works, we consider the simple case n = 2 in detail. Let Vµ = V + µṼ
and Wµ = W +µW̃ be two solutions of Eq. (11), which is equivalent to the equation X∇V = det X∇ Ṽ when n = 2.
The ordinary product of the polynomials Vµ and Wµ (not yet a solution of (11)) becomes

VµWµ = V W + (V W̃ + Ṽ W )µ+ Ṽ W̃µ2.

Since det Xµ = µ2
+ tr Xµ+ det X , we can reduce µ2 modulo the polynomial det Xµ. We obtain µ2

≡ −(tr X)µ−

det X . Vµ ∗ Wµ is by definition the unique polynomial that is linear in µ and congruent to the product VµWµ. Hence,

Vµ ∗ Wµ = V W + (V W̃ + Ṽ W )µ+ Ṽ W̃ (−(tr X)µ− det X)

= V W − (det X)Ṽ W̃ +

(
V W̃ + Ṽ W − (tr X)Ṽ W̃

)
µ.

When n = 2, the multiplication formula becomes clearer when formulated without the µ-notation. Let (V, Ṽ ) and
(W, W̃ ) be two solutions of the equation X∇V = det X∇ Ṽ . Then

(V, Ṽ ) ∗ (W, W̃ ) :=

(
V W − (det X)Ṽ W̃ , V W̃ + Ṽ W − (tr X)Ṽ W̃

)
(13)

is also a solution of the same equation.

Remark 6. The multiplication can be introduced for more general systems

Aµ∇Vµ ≡ 0 (mod Pµ), (14)

where Aµ is an arbitrary rank two tensor that is a polynomial in µ, Pµ is a fixed polynomial in µ of degree m, Vµ
is a polynomial of one degree less than Pµ. If Aµ and Pµ are related through the equation Aµ∇ Pµ ≡ 0 (mod Pµ),
solutions Vµ and Wµ of (14) can be multiplied in a way similar to the case described in Theorem 5. The reason why
we have presented the multiplication for the more special kind of system, is to make the connection to cofactor pair
systems (described later in this work) more visible.

The multiplication constitutes a powerful tool for generating, in a purely algebraic way, new solutions of the system
(11). For example, we can start with a trivial solution, i.e., a polynomial in µ of degree at most n − 1 with constant
coefficients, and multiply it by itself repeatedly. This procedure will usually generate an infinite sequence of non-trivial
solutions. The next theorem contains some algebraic properties of the multiplication.
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Theorem 7. The space of solutions of (9) together with the scalar multiplication, addition (defined in the obvious
way) and multiplication ∗ is an algebra over R, where the ∗-multiplication is associative and commutative. Moreover,
a solution Vµ has a multiplicative inverse in the space of solutions if and only if Vµ and det Xµ are relatively prime.

Proof. The linear structure of solutions and the bi-linearity of the multiplication are obvious. Thus, the space of
solutions has the described algebra structure. The associative and commutative properties of the multiplication follow
immediately from properties of multiplication in general quotient rings of polynomials. Suppose that Vµ is a solution,
then there exists a polynomial Ṽµ, of degree less than n, such that VµṼµ ≡ 1 if and only if Vµ and det Xµ are relatively
prime. We need only show that if such polynomial exists, it must be a solution of Xµ∇Vµ ≡ 0. There exists a unique
polynomial Qµ such that VµṼµ = Qµ det Xµ + 1. Thus

0 ≡ Xµ∇1 ≡ Xµ∇(Qµ det Xµ + 1) = Xµ∇(VµṼµ)

= ṼµXµ∇Vµ + VµXµ∇ Ṽµ ≡ VµXµ∇ Ṽµ.

Hence, the proof is complete. �

Example 8. The trivial solution Vµ = µ has a multiplicative inverse if and only if µ is not a factor of det Xµ, i.e.,
det X 6= 0. In that case

µ−1
= −

1

Z (0)
(Z (1) + Z (2)µ+ · · · + Z (n)µn−1).

4. The equation X∇ det X = det X∇tr X

As we have seen, the multiplication introduced for the system Xµ∇Vµ ≡ 0 (mod det Xµ), relies on the
assumption that the tensor X satisfies the equation

Xµ∇ det Xµ ≡ 0 (mod det Xµ), (15)

that is equivalent to

Xµ∇ det Xµ = det Xµ∇tr Xµ,

that in components reads

X∇Z (i) + ∇Z (i−1)
= Z (i)∇Z (n−1), i = 0, . . . , n − 1, (16)

where Z (−1)
:= 0. When considered as equations for the tensor X , we see that the equations above form a system of

n(n −1) non-linear first-order PDE’s for n2 unknown functions X i
j . The aim of this section is to investigate properties

of Eq. (15).

4.1. X torsionless

The Nijenhuis torsion of a (1, 1)-tensor J is a (1, 2)-tensor, NJ , defined through its action on vector fields X and
Y as

NJ (X, Y ) = [J X, JY ] − J [J X, Y ] − J [X, JY ] + J 2
[X, Y ].

A tensor with vanishing torsion is called torsionless. The components of torsion tensor are given by (NJ )
k
i j =

2(J h
[i ∇|h| J k

j] − J k
m∇[i J m

j] ). In [3], it is proven that any torsionless tensor satisfies the equation X∇ det X = det X∇tr X .
However, one can go further and express Xd(det X) − det Xd(tr X) as a contraction of the torsion with the cofactor
tensor of X :

Proposition 9. Any tensor X of rank 2 satisfies the relation

2 (Xd(det X)− det Xd(tr X))i = (NX )
k
i j C

j
k .
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Proof. By using the relation ∂k det X = ∇k X i
j C

j
i , where C = cof(X) = (det X)X−1, we obtain

(NX )
k
i j C

j
k = 2

(
Xh

i ∇h X k
j − Xh

j ∇h X k
i − X k

h∇i Xh
j + X k

h∇ j Xh
i

)
C j

k

= 2
(

Xh
i ∂h det X − det Xδh

k ∇h X k
i − det Xδ j

h∇i Xh
j + det Xδ j

h∇ j Xh
i

)
= 2 (Xd(det X)− det Xd(tr X))i . �

Since X and X + µI have the same torsion, we immediately get the following result:

Corollary 10. Any torsionless tensor X satisfies (15).

Thus, every torsionless tensor of rank two, generates a system of PDE’s with a multiplicative structure on its
solution space.

4.2. X = J̃−1 J

Any SCK tensor is torsionless and therefore, it satisfies Eq. (15) according to the previous theorem. More generally,
we have:

Theorem 11. Suppose that J and J̃ are SCK tensors and let X = J̃−1 J (X i
j = ( J̃−1)

i
k J k

j ). Then X satisfies Eq. (15).

The proof relies on some properties of equivalent metrics that are proven in [1]. We say that two metrics g and ḡ, on
the same configuration space Q, are equivalent if their geodesics locally coincide when considered as unparametrized
curves. There is a close connection between equivalence of metrics and SCK tensors. If J is a SCK tensor of g, then
ḡi j

= c(det J )J i j is equivalent to g for every non-zero constant c. Moreover, every metric equivalent to g can be
expressed in this way. There is also a 1–1 correspondence between non-singular SCK tensors of equivalent metrics.
Namely, if ḡi j

= (det J )J i j for a SCK tensor J of g and J̃ is another SCK tensor of g, then J̄ = J̃ J−1 is a SCK
tensor of ḡ.

Proof. Let J̄ = J J̃−1 and let ḡ be the metric equivalent to g, defined by ḡi j
= (det J̃ ) J̃ i j . Let ∇̄ denote the covariant

derivative with respect to the Levi-Civita connection of the metric ḡ. Then, since J̄ is a SCK tensor of ḡ, we have

0 =
(
J̄ ∇̄ det J̄ − det J̄ ∇̄tr J̄

)i
= J̄ i

h ḡhj∂ j det J̄ − (det J̄ )ḡi j∂ j tr J̄

= det J̃
(

J i
r ( J̃

−1)rh J̃ h
k gk j∂ j det J̄ − (det J̄ ) J̃ i

k gk j∂ j tr J̄
)

= det J̃
(

J i
k gk j∂ j det J̄ − (det J̄ ) J̃ i

k gk j∂ j tr J̄
)

= det J̃
(

J∇ det J̄ − (det J̄ ) J̃∇tr J̄
)i
.

Thus, J∇ det J̄ = (det J̄ ) J̃∇tr J̄ , which is equivalent to X∇ det X = det X∇tr X . Since J + µ J̃ is a SCK tensor
whenever J and J̃ are, we can replace J with J + µ J̃ , which completes the proof. �

According to Theorem 11 any QCR equation (cofJ )−1
∇V = (cof J̃ )−1

∇ Ṽ is equipped with the multiplication
described in Theorem 5. When restricted to QCR equations, Theorem 5 reduces to Lundmark’s multiplication of
cofactor pair systems. However, the multiplication theorem in this work ensures that multiplication exists for a much
larger class of equations than just QCR equations.

4.3. New solutions from known solutions

The following two theorems tell us how to produce new solutions of Eq. (15) from known solutions.
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Theorem 12. Suppose that X is non-singular. Then X solves Eq. (15) if and only if X−1 solves the same equation. In
other words,

Xµ∇ det Xµ = det Xµ∇tr Xµ

if and only if

(X−1)µ∇ det(X−1)µ = det(X−1)µ∇tr (X−1)µ. (17)

Proof. Define W (i) through

det(X−1)µ = W (0)
+ W (1)µ+ · · · + W (n)µn, W (−1)

:= 0.

Then X−1 satisfies Eq. (17) if and only if

0 = X−1
∇W (i)

+ ∇W (i−1)
− W (i)

∇W (n−1) i = 0, . . . , n − 2.

Let λi denote the eigenvalues of X , then the eigenvalues of X−1 are 1/λi . Thus,

W (i)
=

∑
1≤r1<···<rn−i ≤n

1
λr1

· · ·
1

λrn−i

=

∑
1≤r1<···<ri ≤n

λr1 · · · λri

λ1 · · · λn

=
Z (n−i)

Z (0)
.

Therefore, if we let Z (n+1)
:= 0, we have

X−1
∇W (i)

+ ∇W (i−1)
− W (i)

∇W (n−1)

= X−1

(
∇

Z (n−i)

Z (0)
+ X∇

Z (n−i+1)

Z (0)
−

Z (n−i)

Z (0)
X∇

Z (1)

Z (0)

)

=
X−1

(Z (0))2

(
Z (0)∇Z (n−i)

− Z (n−i)
∇Z (0) + Z (0)X∇Z (n−i+1)

− Z (n−i+1)X∇Z (0) − Z (n−i)X∇Z (1) +
Z (n−i)Z (1)

Z (0)
X∇Z (0)

)

=
X−1

(Z (0))2

(
Z (n−i+1)(Z (0)∇Z (n−1)

− X∇Z (0))− Z (n−i)
∇Z (0)

− Z (n−i)X∇Z (1) +
Z (n−i)Z (1)

Z (0)
X∇Z (0)

)

=
Z (1)Z (n−i)X−1

(Z (0))3

(
−Z (0)∇Z (n−1)

+ X∇Z (0)
)

= 0,

where we have used the relation (16) repeatedly. �

One can also construct solutions of (15) from known solutions of smaller dimension.

Theorem 13 (Direct Sum). Let r = (q1, . . . , qm), s = (qm+1, . . . , qn), and

(∇r )
i
=

m∑
j=1

gi j∂ j , (∇s)
i
=

n∑
j=m+1

gi j∂ j .
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Suppose that A and B are rank two tensors such that Aµ∇r det Aµ = det Aµ∇r tr Aµ and Bµ∇s det Bµ =

det Bµ∇s tr Bµ, where the elements in A depend only on the coordinates in r and the elements in B only on the
coordinates in s. Then

X =

[
A 0
0 B

]
satisfies Eq. (15).

Proof.(
Xµd(det Xµ)

)
a = (Xµ)

i
a∂i

(
det Aµ det Bµ

)
= (det Bµ)(Xµ)

i
a∂i

(
det Aµ

)
+ (det Aµ)(Xµ)

i
a∂i

(
det Bµ

)
=

m∑
i=1

(det Bµ)(Aµ)
i
a∂i

(
det Aµ

)
+

n∑
i=m+1

(det Aµ)(Bµ)
i
a∂i

(
det Bµ

)
= det Bµ det Aµ∂a(tr Aµ + tr Bµ)

=
(
det Xµd(tr Xµ)

)
a . �

Since each torsionless tensor solves Eq. (15), it is natural to ask whether the converse is true. Is every solution, X ,
of Eq. (15) torsionless? We have presented a few methods for generating new solutions of Eq. (15). As an attempt
to answer the question above, we can check whether the generated solutions are torsionless. It is easy to see that a
tensor X constructed by the method in Theorem 13 is torsionless if and only if the tensors A and B are torsionless.
Moreover, if X is torsionless, by definition, we have

[Xu, Xv] − X [Xu, v] − X [u, Xv] + X2
[u, v] = 0 (18)

for all vectors u and v. Let ũ = Xu and ṽ = Xv and multiply Eq. (18) with X−2. Then we obtain

X−2
[ũ, ṽ] − X−1

[ũ, X−1ṽ] − X−1
[X−1ũ, ṽ] + [X−1ũ, X−1ṽ] = 0.

Since ũ and ṽ are arbitrary vectors, X−1 must be torsionless whenever X is torsionless. Hence, Theorems 13 and
12 give no indication of the existence of a tensor X with non-vanishing torsion that satisfies Eq. (15). However, when
J and J̃ are SCK tensors, it turns out that even though J̃−1 J solves Eq. (15), it is in general not torsionless.

Example 14. Suppose that (Q, g) is the Euclidean space with Cartesian coordinates (x, y) and let

J =

[
x2

+ 1 xy
xy y2

]
, J̃ =

1
2

0

0 1

 .
J and J̃ are then SCK tensors, thus, according to Theorem 11, X = J̃−1 J solves Eq. (15). But X has a non-vanishing
torsion, since (NX )

1
21 = 4x2 y 6= 0.

4.4. X diagonal

We will now consider Eq. (15) under the assumption that X is diagonal in the coordinates (q i ). We seek a way to
characterize all such solutions. Suppose that X is non-singular, det X 6= 0, and diagonal in the coordinates (q i ), i.e.,

X j
i = u jδ

j
i , u j

= u j (q1, . . . , qn) 6= 0.

Moreover, Eq. (15) can be written as

0 = XdZ ( j)
+ dZ ( j−1)

− Z ( j)dZ (n−1), j = 0, . . . , n − 2. (19)
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When written in components these equations become

0 =

∑
1≤r1<···<rn− j ≤n

ui∂i (u
r1 · · · urn− j )+

∑
1≤r1<···<rn− j+1≤n

∂i (u
r1 · · · urn− j+1)

−

∑
1≤r1<···<rn− j ≤n

ur1 · · · urn− j ∂i (u
1
+ · · · + un), j = 0, . . . , n − 2, i = 1, . . . , n. (20)

In the case when all diagonal elements of X are equal, i.e., u1
= · · · = un

=: u, then X is a solution of (15) for
arbitrary choice of the function u. In fact, all diagonal solutions can be constructed by taking smaller blocks of this
kind, in the sense of Theorem 13.

Theorem 15. Assume X is diagonal in the coordinates q i , i.e., X j
i = u jδ

j
i . Then X satisfies Eq. (15) if and only

if (possibly after renumbering the eigenvalues u j and the coordinates q j simultaneously) X has the following block
structure:

X = diag(X1, X2, . . . , X3), Xk = diag(φk, . . . , φk) (21)

where Xk is a quadratic matrix of size nk and φk
= φk(qn1+···+nk−1+1, . . . , qn1+···+nk ). In other words, X satisfies

(15) if and only if the eigenvalues u j are related in the following way:

φ := u j1 = · · · = u jr

φ 6= u j , j 6= jk, k = 1, . . . , r

}
⇒ φ = φ(q j1 , . . . , q jr ),

where φ is an arbitrary function (sufficiently regular), depending only on the coordinates q j1 , . . . , q jr .

Example 16 (n = 3). In order to clarify the complicated notation in Theorem 15, we specify in the case n = 3 all
situations that may occur. Let X = diag(u1, u2, u3). Eq. (15) is satisfied if and only if u1, u2, u3 can be written in one
of the following ways (up to permutations of the indices):

u1
= φ(q1, q2, q3)

u2
= φ(q1, q2, q3)

u3
= φ(q1, q2, q3)


u1

= φ(q1)

u2
= ψ(q2, q3)

u3
= ψ(q2, q3)


u1

= φ(q1)

u2
= ψ(q2)

u3
= ω(q3)

where φ, ψ and ω are arbitrary functions.

Proof. We multiply the first of Eqs. (19) with X−1 and subtract it from the second equation. Thereafter, we multiply
the modified second equation with X−1 and subtract it from third equation. When we proceed in this manner, we are
left with the equations

0 = dZ (m) +

(
−Z (m)X−1

+ Z (m−1)X−2

+ · · · + (−1)m+1 Z (0)X−(m+1)
)

dZ (n−1), m = 0, . . . , n − 2 (22)

By induction over m, it is a simple task to show that the i-th diagonal element of

Z (m) − Z (m−1)X−1
+ · · · + (−1)m Z (0)X−m

consists of exactly those terms of Z (m) that depend on ui . Thus, the i-th component of Eq. (22) can be written as

0 = ∂i

 ∑
1≤r1<···<rn−m≤n

ur1 · · · urn−m

 (23)

−

 ∑
1≤r1<···<rn−m−1≤n,rs 6=i

ur1 · · · urn−m−1

 ∂i (u
1
+ · · · un). (24)
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After some manipulation, this equation becomes

0 =

n∑
k=1,k 6=i

 ∑
1≤r1<···<rn−m−2≤n,rs 6=i,k

ur1 · · · urn−m−2

 (ui
− uk)∂i u

k .

For the sake of simplicity, we let i = 1. The other cases follow by symmetry. If we collect all these equations for
different m, we obtain the matrix equation

A[∂1u2
· · · ∂1un

]
T

= 0, (25)

where A is a square matrix of size n − 1, defined as

Am
k =

∑
1<r1<···<rn−m−2≤n,rs 6=k

ur1 · · · urn−m−2(ui
− uk).

If we consider (25) as a linear system of equations for the functions ∂1uk and reduce it into triangular form, we obtain
the equation B[∂1u2

· · · ∂1un
]
T

= 0, where

B =


u1

− u2 u1
− u3

· · · u1
− un

0 (u2
− u3)(u1

− u3) · · · (u2
− un)(u1

− un)
...

...
. . .

...

0 0 · · · (un−1
− un) · · · (u1

− un)

 .
By renumbering the coordinates q i and the functions ui simultaneously, it is no restriction to assume that X has the
form (21). The equation in row n − nt of (25) has the form

nt (u
1
− φt )(u2

− φt ) · · · (un1+n2+···+nt−1 − φt )∂1φ
t
= 0.

Thus, ∂1φ
t

= 0, i.e., φt does not depend on q1. In the same way we conclude that φt cannot depend on any
of the variables q1, q2, . . . , qn1+n2+···+nt−1 . If we change the order of the blocks in (21) by renumbering again the
coordinates q i and the functions ui , we reach the desired result for the other blocks, which completes the proof. �

There exist solutions of Eq. (15) that do not belong to any of the families of solutions described in this section.

Example 17. Let (Q, g) be the Euclidean space with coordinates (x, y), and let

X =
1

x − y

[
1 + x2 y −1 − y3

1 + x3
−1 − xy2

]
.

The tensor X cannot be expressed on the form J̃−1 J for SCK tensors J and J̃ . This is easily realized by comparing
coefficients of the polynomial elements in (x − y) J̃ X and (x − y)J , for arbitrary SCK tensors J and J̃ . X has also a
non-vanishing torsion and is not a direct sum of some simple solutions as in Theorem 13. Since this is valid also for
X−1, the tensor X cannot be reached by any of the methods for obtaining solutions, which has been described in this
section.

5. Multiplication and Levi-Civita equivalence

It has been shown by Benenti in [1] that the concept of cofactor pair systems is closely connected to the theory of
equivalent dynamical systems. In this section we will explain this connection and discuss the role of multiplication of
cofactor pair systems in terms of equivalent dynamical systems.

Equivalence of dynamical systems was first introduced by Levi-Civita in [6]. We say that two dynamical systems
(Q, g, F) and (Q, ḡ, F̄), on the same configuration space Q, are equivalent if they have the same trajectories but
possibly different velocities. In other words, if solutions of one dynamical system are known, one can obtain solutions
of an equivalent system by rescaling time in a proper way. In particular, two metrics g and ḡ are equivalent if the
dynamical systems (Q, g, 0) and (Q, ḡ, 0), with no external forces, are equivalent. The equivalence of dynamical
systems provides a method for solving a complicated dynamical systems by finding a simpler equivalent system
which can be integrated by one of the known methods.
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Solving dynamical systems is in general quite difficult, the most sophisticated methods are developed for
Lagrangian systems, i.e., systems where the force F is conservative. Therefore, if we start with a non-Lagrangian
dynamical system (Q, g, F), our chances of solving this system would certainly increase if we could find an equivalent
Lagrangian system (Q, ḡ,−∇̄V ). If we are able to find such a system, we could try to integrate it, for instance through
separation of variables in the corresponding Hamiltonian–Jacobi equation. If we succeed with solving the Lagrangian
system, then we are able to solve the original non-Lagrangian system by rescaling time.

Given a dynamical system, the problem of characterizing all equivalent systems is what we call the Levi-Civita
equivalence problem. The general Levi-Civita equivalence problem is complicated and the existing characterizations
hard to deal with. However, Benenti studied a stricter form of geodesic dynamical equivalence and was able to give
a nice solution of the corresponding equivalence problem [1]. Two dynamical systems are geodesically equivalent if
they are equivalent and their metrics also are equivalent. The most important of Benenti’s results, in the context of this
paper, is that a cofactor pair systems is in general equivalent to a separable Lagrangian system. In detail, if J̃ J−1 has
real simple eigenvalues, then the cofactor pair system(

Q, g, F = −(cof J )−1
∇V = −(cof J̃ )−1

∇ Ṽ
)

is equivalent to a separable Lagrangian system(
Q, ḡ, F̄ = −∇̄V = −(cof J̃ J−1)−1

∇̄ Ṽ
)
,

where the metric ḡ is defined through the SCK tensor J as ḡi j
= (det J )J i j . We note that the metric ḡ of the equivalent

Lagrangian system may not be definite, even though the metric g of the cofactor pair system is positive definite.
Thus, given a pair of SCK tensors J and J̃ such that J̃ J−1 has real simple eigenvalues, we can use the

multiplication described in Theorem 5 in order to produce large families of non-Lagrangian dynamical systems that
are all geodesically equivalent to separable Lagrangian systems. For example, let us start with the trivial solution
Vµ = µ of Eq. (9). By taking powers,

Vµ,k = µ ∗ µ ∗ · · · ∗ µ︸ ︷︷ ︸
k times

,

with respect to the multiplication from Theorem 5, we obtain an infinite family of solutions of Eq. (9). For each k, the
dynamical system(

Q, g, F = −(cof J )−1
∇V (0)

k = −(cof J̃ )−1
∇V (n−1)

k

)
, (26)

where Vµ,k = V (0)
k + V (1)

k µ + · · · + V (n−1)
k µn−1, is a different cofactor pair system on the Riemannian manifold

(Q, g). The dynamical system (26) is equivalent to the Lagrangian system(
Q, ḡ, F̄ = −∇̄V (0)

k = −(cof( J̃ J−1))−1
∇̄V (n−1)

k

)
,

which can be solved through separation of variables. By rescaling of time t → t̄ , where dt̄/dt = det J , one can then
obtain the general solution of the original system (26).

6. Examples

In this section we give some examples of QCR equations in order to illustrate how the multiplication works in
some concrete cases.

Example 18 (Jacobi Family of Separable Potentials, n = 2). Let (Q, g) be the Euclidean space with the Cartesian
coordinates (q1, q2) = (x, y), and let the SCK tensors J and J̃ be given by:

J =

[
−x2

+ λ1 −xy
−xy −y2

+ λ2

]
, J̃ =

[
1 0
0 1

]
,
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where λ1 and λ2 are constants. The fundamental equation is

0 = DJ D J̃φ

= xy
∂2φ

∂x2 − xy
∂2φ

∂y2 + (−x2
+ λ1 + y2

− λ2)
∂2φ

∂x∂y
+ 3y

∂φ

∂x
− 3x

∂φ

∂y
.

We note that the fundamental equation in this example is a special case of the well known Bertrand–Darboux
equation [12], that characterizes two-dimensional separable potentials. According to Theorem 3, (V, Ṽ ) is a solution
of the QCR equation if and only if Ṽ satisfies the fundamental equation and V is the unique (up to an additive
constant) function satisfying the equation ∇V = cof J∇ Ṽ . When (V, Ṽ ) and (W, W̃ ) solves the QCR equation, the
multiplication generates a new solution according to the formula

(V, Ṽ ) ∗ (W, W̃ ) = (V W − (−λ2x2
− λ1 y2

+ λ1λ2)Ṽ W̃ , V W̃ + Ṽ W − (−x2
− y2

+ λ1 + λ2)Ṽ W̃ ).

By multiplying trivial solutions in the following way:

(Vk, Ṽk) :=

(
(0, 1)2 + (λ1λ2, λ1 + λ2)

)
∗ (0, 1)k−1, k = 1, 2, . . . , (27)

we obtain an infinite sequence of non-trivial solutions of the QCR equation. Note that (Vk, Ṽk) are simply different
powers of (0, 1), but the constant terms in the first element are eliminated in order to obtain simpler expressions.
Hence,(

Q, g, F = −(cof J )−1
∇Vk = −∇ Ṽk

)
is an infinite sequence of Lagrangian systems with separable potentials. The functions Ṽk are polynomials in x and y
given by

Ṽ1 = x2
+ y2

Ṽ2 = (x2
+ y2)2 − (λ1x2

+ λ2 y2)

Ṽ3 = (x2
+ y2)3 − 2(x2

+ y2)(λ1x2
+ λ2 y2)+ (λ2

1x2
+ λ2

2 y2)

...

As an alternative to (27), we can define the functions Ṽk recursively by

Ṽk =

[
x2

+ y2
− (λ1 + λ2)

]
Ṽk−1 +

[
λ2x2

+ λ1 y2
− λ1λ2

]
Ṽk−2,

for k = 3, 4, . . ., where Ṽ1 = x2
+ y2 and Ṽ2 = (x2

+ y2)2 − (λ1x2
+ λ2 y2). The sequence Ṽk is nothing but the

upper half of the bi-infinite Jacobi family of potentials (see [14]).

Proposition 19. Let Ṽ0 := 1. Then the functions {Ṽk} form a basis for the space of polynomial solutions of the
fundamental equation.

Proof. The proof is technical and lengthy so we present here only the idea of the proof. Let φ be a polynomial in x
and y, required to satisfy the fundamental equation. By inserting it into the FE, we obtain a polynomial equation in
which we can identify coefficients at different powers x j yk in order to obtain relations between the coefficients in φ.
By analyzing these relations, it is possible (after lengthy calculations) to conclude that a general polynomial solution
of the fundamental equation has the form

φ =

n∑
a=0

An−a

n∑
m=a

n−m∑
i=0

(
n − m

i

) m−a∑
k=0

(
i + k − 1

k

)
×

(
n − a − 1
m − a − k

)
(λ2 − λ1)

k(−λ2)
m−a−k x2i y2(n−m−i),

where Ai are arbitrary constants. One can see that any basis for these polynomials contains no polynomials of odd
order, and exactly one polynomial of each even degree. Since this holds also for the polynomial solutions Ṽk , these
must form a basis for all polynomial solutions of the fundamental equation. �
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In this example the multiplication has been applied directly to solutions of the QCR equations, since in the two-
dimensional case it coincides with the µ dependent QCR equation. The next example will illustrate what happens in
the case n = 3, where we must use the related µ dependent system in order to apply the multiplication formula.

Example 20 (Parabolic Family of Separable Potentials, n = 3). In this example we let J and J̃ be SCK tensors, in
three-dimensional Euclidean space with coordinates q = (x, y, z), given by

J =

λ1 0 x
0 λ2 y
x y 2z

 , J̃ =

1 0 0
0 1 0
0 0 1

 ,
where λ1, λ2 ∈ R are constants. We have det Xµ = Z (0) + Z (1)µ+ Z (2)µ2

+ µ3, where

Z (0) = −λ2x2
− λ1 y2

+ 2λ1λ2z

Z (1) = λ1λ2 − x2
− y2

+ 2(λ1 + λ2)z

Z (2) = λ1 + λ2 + 2z.

Suppose that Vµ = V (0)
+ V (1)µ + V (2)µ2 and Ṽµ = Ṽ (0)

+ Ṽ (1)µ + Ṽ (2)µ2 are two solutions of Eq. (11). The
multiplication formula for Vµ ∗ Ṽµ is obtained by reducing the polynomial VµṼµ modulo det Xµ. First we collect
terms in the product VµṼµ that are of the same degree in µ,

VµṼµ = V (0)Ṽ (0)
+

(
V (0)Ṽ (1)

+ V (1)Ṽ (0)
)
µ+

(
V (0)Ṽ (2)

+ V (1)Ṽ (1)
+ V (2)Ṽ (0)

)
µ2

+

(
V (1)Ṽ (2)

+ V (2)Ṽ (1)
)
µ3

+ V (2)Ṽ (2)µ4.

After that, we replace the monomials µ3 and µ4 with the congruent expressions modulo det Xµ that are of degree less
than three,

µ3
≡ −Z (0) − Z (1)µ− Z (2)µ2

µ4
≡ Z (0)Z (2) +

(
Z (1)Z (2) − Z (0)

)
µ+

(
(Z (2))2 − Z (1)

)
µ2.

We have then obtained Vµ ∗ Ṽµ:

Vµ ∗ Ṽµ = V (0)Ṽ (0)
− Z (0)(V (1)Ṽ (2)

+ V (2)Ṽ (1))+ Z (0)Z (2)V (2)Ṽ (2)

+

[
V (0)Ṽ (1)

+ V (1)Ṽ (0)
− Z (1)(V (1)Ṽ (2)

+ V (2)Ṽ (1))+ (Z (1)Z (2) − Z (0))V (2)Ṽ (2)
]
µ

+

[
V (0)Ṽ (2)

+ V (1)Ṽ (1)
+ V (2)Ṽ (0)

− Z (2)(V (1)Ṽ (2)
+ V (2)Ṽ (1))

+ ((Z (2))2 − Z (1))V (2)Ṽ (2)
]
µ2. (28)

By starting with the trivial solution V0,µ = λ1λ2 + (λ1 + λ2)µ + µ2, we obtain an infinite sequence, Vk,µ =

V (0)
k + V (1)

k µ + V (2)
k µ2

:= V0,µ ∗ µk , of non-trivial solutions by multiplying with different powers of µ. Note that,
when k is a negative integer, µk is defined by

µk
:= (µ−1)−k

≡ −

(
Z (1)

Z (0)
+

Z (2)

Z (0)
µ+

1

Z (0)
µ2

)−k

.

Just as in the previous example, we obtain an infinite family of separable Lagrangian systems with potentials defined
by Vk := V (2)

k ,

...

V−1 =
λ1λ2

2zλ1λ2 − λ2x2 − λ1 y2

V0 = 1

V1 = −2z
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V2 = 4z2
+ (x2

+ y2)

V3 = −8z3
− 4z(x2

+ y2)− (λ1x2
+ λ2 y2)

...

This sequence of separable potentials can also be found in [14] and is called the parabolic family.

7. Conclusions

Cofactor pair systems constitute a family of dynamical systems on Riemannian manifolds that possesses several
nice properties. In particular, new cofactor pair systems can be generated from known ones with the use of the
multiplicative structure on the solution space of the so-called quasi-Cauchy–Riemann equations (cofJ )−1

∇V =

(cof J̃ )−1
∇ Ṽ .

In this work, we show that multiplication of the quasi-Cauchy–Riemann equation is a special case of a
multiplication defined for a much larger family of systems of partial differential equations. Systems that allow this
multiplication are characterized by the tensors Xµ = X + µI that solve the equation

Xµ∇ det Xµ = det Xµ∇tr Xµ. (29)

We present large families of solutions of Eq. (29) and methods for generating new solutions from known ones. We also
discuss the role of multiplication of cofactor pair systems for constructing Levi-Civita equivalent dynamical systems.

The content of this work indicates that the following questions may be worth examining in the future:

(1) We have already mentioned that systems more general than those treated in this paper admit a multiplication on
the solution space. In fact, there exists a large class of systems of first-order linear PDE’s, to be described, for
which solutions can be built through the multiplication ∗.

(2) We have seen that the Cauchy–Riemann equations appear as a special case of a QCR equation and that the
multiplication ∗ reconstructs multiplication of complex analytical functions. The question remains of whether
some other elements from the rich theory of analytical functions have counterparts in the more general setting.
In particular, since the multiplication makes it possible to form power series of simple solutions of the QCR
equations, it would be interesting to characterize those solutions that can be represented as power series of some
elementary solutions.
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